The development of a bioreactor to perfuse radially-confined hydrogel constructs: design and characterization of mass transport properties.
نویسندگان
چکیده
Limitations to nutrient transport provide a challenge to the development of 3D tissue-engineered constructs. A heterogeneous distribution of viable cells and functional matrix within the developing tissue is a common consequence. In the present study, a bioreactor was developed to perfuse fluid through cylindrical agarose constructs. The transport and distribution of dextran molecules (FD-4, FD-500, FD-2000) within the agarose was visualized in order to determine the bioreactors effectiveness for transport enhancement. By 24 h, the perfusion bioreactor achieved 529%, 395% and 294% higher concentrations of FD-4, FD-500 and FD-2000, respectively, than those solely due to diffusion. Of particular interest was the effectiveness of the bioreactor to transport molecules to the central region of the constructs. In this respect, the perfusion bioreactor was found to increase transportation of FD-4, FD-500 and FD-2000 by 30%, 291% and 222% over that of diffusion. Articular chondrocytes were cultured and perfused using the bioreactor. The improved molecular transport achieved led to an average 75% and 1340% increase of DNA and sulphated GAG, respectively at 20 days. More significantly was the 106% and 1603% increase of DNA and GAG, respectively, achieved at the central core of the 3D constructs.
منابع مشابه
Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملLoratadine- Loaded Thermoresponsive Hydogel : Characterization and Ex-vivo Rabbit Cornea Permeability Studies
Poor bioavailability of ophthalmic drops is mainly due to drainage through the nasal-lacrimal duct and a very low permeability through corneal epithelium. The aim of our study was to prepare and characterize an ocular hydrogel of loratadine, as an example of a lipophilic drug, to increase drug concentration and residence time at the site of action in the eye. In this study,a 23full factorial de...
متن کاملLoratadine- Loaded Thermoresponsive Hydogel : Characterization and Ex-vivo Rabbit Cornea Permeability Studies
Poor bioavailability of ophthalmic drops is mainly due to drainage through the nasal-lacrimal duct and a very low permeability through corneal epithelium. The aim of our study was to prepare and characterize an ocular hydrogel of loratadine, as an example of a lipophilic drug, to increase drug concentration and residence time at the site of action in the eye. In this study,a 23full factorial de...
متن کاملUnsteady Numerical Investigations of Flow and Heat Transfer Characteristics of Nanofluids in a Confined Jet Using Two-Phase Mixture Model
The development of high-performance thermal systems has increased interest in heat transfer enhancement techniques. The application of additives to heat transfer liquids is one of the noticeable effort to enhance heat transfer. In this paper two-dimensional unsteady incompressible nanofluid flow in a confined jet at the laminar flow regime is numerically investigated. The Mixture model is consi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biorheology
دوره 46 5 شماره
صفحات -
تاریخ انتشار 2009